Minggu, 29 September 2013

Bilangan Peroksida

Diposting oleh Unknown di 03.36 0 komentar
LAPORAN LENGKAP

NAMA                : Andi Anugrah Indah Pratiwi
KELAS/ KLP          : 3c/ c.1.1
NIS                 : 1 1 4 6 2 8
TNGGAL MULAI        : 2 / 09 / 2013
TANGGAL SELESAI     : 2  / 09 / 2013
JUDUL PENETAPAN     : Bilangan Peroksida
TUJUAN PENETAPAN    : Untul menguji ketengikan Minyak
DASAR PRINSIP      : Bilangan Peroksida sebagai jumlah asam      lemak teroksidasi ditentukan berdasarkan    jumlah iodine (I2) yang terbentuk dari      reaksi peroksida dalam minyak dengan ion    iodine (I-) yang sebanding dengan kadar      peroksida sampel.
  REAKSI              : 

  LANDASAN TEORI      :

Tahukah anda apa itu angka peroksida??
Angka peroksida atau bilangan peroksida merupakan suatu metode yang biasa digunakan untuk menentukan degradasi minyak atau untuk menentukan derajat kerusakan minyak. 

Berapa standar mutu minyak goreng yang baik bagi tubuh??
Di Indonesia standar mutu minyak goreng ditentukan melalui SNI 01-3741-1995 yaitu sebagai berikut :




Bilangan peroksida adalah indeks jumlah lemak atau minyak yang telah mengalami oksidasi Angka peroksida sangat penting untuk identifikasi tingkat oksidasi minyak. Minyak yang mengandung asam- asam lemak tidak jenuh dapat teroksidasi oleh oksigen yang menghasilkan suatu senyawa peroksida. Cara yang sering digunakan untuk menentukan angka peroksida adalah dengan metoda titrasi iodometri. Penentuan besarnya angka peroksida dilakukan dengan titrasi iodometri.

Salah satu parameter penurunan mutu minyak goreng adalah bilangan peroksida. Pengukuran angka peroksida pada dasarnya adalah mengukur kadar peroksida dan hidroperoksida yang terbentuk pada tahap awal reaksi oksidasi lemak. Bilangan peroksida yang tinggi mengindikasikan lemak atau minyak sudah mengalami oksidasi, namun pada angka yang lebih rendah bukan selalu berarti menunjukkan kondisi oksidasi yang masih dini. Angka peroksida rendah bisa disebabkan laju pembentukan peroksida baru lebih kecil dibandingkan dengan laju degradasinya menjadi senyawa lain, mengingat kadar peroksida cepat mengalami degradasi dan bereaksi dengan zat lain Oksidasi lemak oleh oksigen terjadi secara spontan jika bahan berlemak dibiarkan kontak dengan udara, sedangkan kecepatan proses oksidasinya tergantung pada tipe lemak dan kondisi penyimpanan. Minyak curah terdistribusi tanpa kemasan, paparan oksigen dan cahaya pada minyak curah lebih besar dibanding dengan minyak kemasan. Paparan oksigen, cahaya, dan suhu tinggi merupakan beberapa faktor yang mempengaruhi oksidasi. Penggunaan suhu tinggi selama penggorengan memacu terjadinya oksidasi minyak. Kecepatan oksidasi lemak akan bertambah dengan kenaikan suhu dan berkurang pada suhu rendah.

Peroksida terbentuk pada tahap inisiasi oksidasi, pada tahap ini hidrogen diambil dari senyawa oleofin menghasikan radikal bebas. Keberadaan cahaya dan logam berperan dalam proses pengambilan hidrogen tersebut. Radikal bebas yang terbentuk bereaksi dengan oksigen membentuk radikal peroksi, selanjutnya dapat mengambil hidrogen dari molekul tak jenuh lain menghasilkan peroksida dan radikal bebas yang baru.

Peroksida dapat mempercepat proses timbulnya bau tengik dan flavor yang tidak dikehendaki dalam bahan pangan. Jika jumlah peroksida lebih dari 100 meq peroksid/kg minyak akan bersifat sangat beracun dan mempunyai bau yang tidak enak. Kenaikan bilangan peroksida merupakan indikator bahwa minyak akan berbau tengik.

Minyak atau lemak bersifat tidak larut dalam semua pelarut berair, tetapi larut dalam pelarut organik seperti misalnya : petroleum eter, dietil eter, alkohol panas, khloroform dan bensena. Dimana asam lemak rantai pendek sampai panjang rantai atom karbon sebanyak delapan bersifat larut dalam air. Makin panjang rantai sehingga akan terbentuk gugus karboksil yang tidak bermuatan. Kemudian dilakukan ekstraksi menggunakan pelarut non-polar seperti petroleum. Asam lemak jenuh sangat stabil terhadap oksidasi, akan tetapi asam lemak tidak jenuh sangat mudah terserang oksidasi. Dimana lemak tidak dapat meleleh pada satu titik suhu, akan tetapi lemak akan menjadi lunak pada suatu interval suhu tertentu. Hal ini disebabkan karena pada umumnya lemak merupakan campuran gliserida dan masing-masing gliserida mempunyai titik cair sendiri-sendiri (Tranggono & Setiaji, 1989).

Lemak dan minyak hampir terdapat dalam semua bahan pangan dengan kandungan yang berbeda-beda. Tetapi lemak dan minyak seringkali ditambahkan dengan sengaja ke bahan makanan dengan berbagai tujuan. Dalam pengolahan bahan pangan, minyak dan lemak berfungsi sebagai media penghantar panas, seperti minyak goreng, shortening (mentega putih), lemak (gajih), mentega dan margarin. Di samping itu penambahan lemak dimaksudkan untuk menambah kalori serta memperbaiki tekstur dan cita rasa bahan pangan. Lemak hewani mengandung banyak sterol yang disebut kolesterol sedangkan lemak nabati mengandung fitosterol dan lenih banyak mengandung asam lemak tidak jenuh sehingga umumnya berbentuk cair (Winarno, 1997).

Mentega menurut Winarno (1997), lemak dari susu terdiri dari trigliserida-trigliserida butirat, dimana asam lemak butirat dan kapoat dalam keadaan bebas akan menimbulkan bau dan rasa tidak enak. Kerusakan lemak yang utama adalah timbulnya bau dan rasa tengik yang disebut proses ketengikan. Hal ini disebabkan oleh otooksidasi radikal asam lemak tidak jenuh dalam lemak. Otooksidasi dimulai dengan pembentukan radikal-radikal bebas yang disebabkan oleh faktor yang dapat mempercepat reaksi seperti cahaya, panas, peroksida lemak atau hidroperoksida, logam-logam berat seperti Cu, Fe, Co dan Mn. Bau tengik yang tidak sedap disebabkan oleh pembentukan senyawa-senyawa hasil pemecahan hidroperoksida. Kemudian dengan adanya radikal bebas ini dengan 0membentuk peroksida aktif yang dapat membentuk hidroperoksida yang bersifat sangat tidak stabil dan mudah pecah menjadai senyawa dengan rantai karbon yang lebih pendek oleh radiasi energi tinggi, energi panas, katalis logam, atau enzim.

Titik asap (smoke point) adalah temperatur dimana sampel mulai berasap ketika berada di bawah kondisi spesifik. Cup di isi dengan minyak atau lemak yang mendidih dan dipanaskan di kontainer yang menyala. Titik asap (smoke point) pada temperatur yang rendah, diteruskan secara tajam oleh bluish smoke dan menjadi menurun. Tes ini memberikan reflek material organik yang volatil pada minyak dan lemak, terutama asam amino bebas dan sisa ekstraksi pelarut. Minyak penggorengan dan minyak olahan harus memiliki titik asap sekitar 2000C dan 3000C (Nielsen, 1998). Bila suatu lemak dipanaskan, pada suhu tertentuk timbul asap tipis kebiruan. Titik ini disebut titik asap (smoke point). Bila pemanasan diteruskan akan tercapai flash point, yaitu minyak mulai terbakar (terlihat nyala). Jika minyak sudah terbakar secara tetap disebut fire point. Suhu terjadinya smoke point ini bervariasi dan dipengaruhi oleh jumlah asam lemak bebas. Jika asam lemak bebas banyak, ketiga suhu tersebut akan turun. Demikian juga bila berat molekul rendah, ketiga suhu itu lebih rendah (Winarno, 1997).
  
Karena tiap jenis lemak berbeda smoke point-nya, lemak yang digunakan untuk menggoreng sebaiknya dipilih lemak yang tahan untuk membentuk asap pada temperatur yang digunakan untuk menggoreng. Lemak yang mengandung tambahan mono- dan di-gliserida cocok digunakan untuk membuat cake dan kurang sesuai jika digunakan untuk menggoreng karena pada lemak tersebut ditambahkan emulsifier pada titik asapnya. Faktor lain, selama penggorengan juga menghasilkan suatu perubahan pada titik asap. Perkembangan dari asam lemak bebas pada beberapa hidrolisis dari lemak selama penggorengan menyebabkan menururnnya titik asap (Bennion & Hughes, 1975).

Molekul-molekul lemak yang mengandung radikal asam lemak tidak jenuh mengalami oksidasi dan menjadi tengik. Bau tengik yang tidak sedap tersebut disebabkan pembentukkan senyawa-senyawa hasil pemecahan hidroperoksida. Menurut teori yang sampai kini masih dianut orang sebuah atom hidrogen yang terikat pada suatu atom karbon yang letaknya disebelah atom karbon lain yang mempunyai ikatan rangkap dapat disingkirkan oleh suatu kuantum energi sehingga membentuk radikal bebas. Kemudian radikal ini dengan oksigen membentuk peroksida aktif yang dapat membentuk hidroperoksida yang bersifat sangat tidak stabil dan mudah pecah menjadi senyawa dengan rantai karbon yang lebih pendek oleh radiasi energi tinggi, energi panas, katalis logam, atau enzim. Senyawa dengan rantai C lebih pendek ini adalah asam-asam lemak, aldehid-aldehid, dan keton yang bersifat volatil dan menimbulkan bau tengik pada lemak (Winarno, 1997)

Minyak goreng berfungsi sebagai pengantar panas, penambah rasa gurih dan penambah kalori bahan pangan. Mutu minyak goreng ditentukan oleh titik asapnya, yaitu suhu pemanasan minyak sampai terbentuk akrolein yang tidak diinginkan dan dapat menimbulkan rasa gatal pada tenggorokan. Hidrasi gliserol akan membentuk aldehida tidak jenuh atau akrolein tersebut. Makin tinggi titik asap makin baik mutu minyak goreng tersebut. Titik asap suatu minyak goreng tergantung dari kadar gliserol bebas. Lemak yang telah digunakan untuk menggoreng titik asapnya akan turun, karena telah terjadi hidrolisis lemak (Winarno, 1997).
  
Reaksi oksidasi bergantung pada banyak frekuensi reaksi dari lemak dalam bahan makanan. Ini biasanya terdiri oleh atmosfer oksigen, frekuensi yang sedikit oleh ozon, peroksida, logam dan agen oksidasi yang lain. Dalam penambahan untuk oksigen dan ozon, lemak dapat dirusak oleh pembentukan reaksi lain, seperti anion superoksida (O2) dan radikal (O2), radikal perhidrosilik (HO2), hidrogen peroksida dan hidrosil radikal (HO). Asam peroksida diproduksi oleh autoxidasi dari aldehid, dan mungkin reaksi dengan molekul lain dari produk aldehid asam karboksilat. Oksidasi langsung dari lemak oleh reaksi dengan ion logam sangat lambat dibawah kondisi normal tetapi mungkin menjadi penting seperti inisiator dari rantai radikal bebas autoxidasi karena ion Fe3+ atau Ca2- dapat di produksi raddikal bebas oleh reakssi dengan asam lemak tidak jenuh, dimana tahap oksidasi dari ion metal ditingkatkan dengan :
R – H + Cu2+ R + Cu + H

Ion mengandung logam yang diubah tahap oksidasinya oleh dua elektron (Pb4+, MnO42-, CrO42-) bereaksi dengan rantai ganda dari lemak tidak jenuh untuk membentuk asam hidroksi tetapi beberapa reaksi tidak disukai didalam produk makanan (Nielsen, 1998).

Bilangan peroksida adalah nilai terpenting untuk menentukan derajat kerusakan pada lemak dan minyak. Asam lemak tidak jenuh dapat mengikat oksigen pada ikatan rangkapnya sehingga membentuk peroksida. Peroksida dapat ditentukan dengan metode iodometri. Cara yang sering digunakan untuk menentukan bilangan peroksida, berdasarkan pada reaksi antara alkali iodida dalam larutan asam dengan ikatan peroksida. Iod yang dibebaskan apda reaksi ini kemudian dititrasi dengan natrium tiosilfat. Penentuan peroksida ini kurang baik dengan cara iodometri biasa meskipun bereaksi sempurna dengan alkali iod. Hal ini disebabkan karena peroksida jenis lainnya hanya bereaksi sebagian. Di samping itu dapat terjadi kesalahan yang disebabkan oleh reaksi antara alkali iodida dengan oksigen dari udara (Ketoren, 1986).

Jenis minyak yang mudah teroksidasi adalah jenis minyak yang tidak jenuh. Semakin tidak jenuh asam lemaknya akan semakin cepat teroksidasi. Selain itu, faktor – faktor seperti suhu, adanya logam berat dan cahaya, tekanan udara, enzim dan adanya senyawa peroksida juga semakin mempercepat berlangsungnya oksidasi dan dengan demikian akan semakin cepat terjadi ketengikan. Berlangsungnya proses oksidasi tersebut dapat diamati dengan beberapa cara, salah satunya dengan mengamati jumlah senyawaan hasil penguraian senyawaan peroksida (asam – asam, alkohol, ester, aldehid, keton, dan sebagainya). Uji peroksida ini pada dasarnya mengukur kadar senyawaan peroksida yang terbentuk selama proses oksidasi. Cara ini biasa diterapkan untuk menilai mutu minyak tetapi cara ini sangat sulit diterapkan untuk jenis makanan yang berkadar lemak rendah (Syarief & Hariyadi, 1991).

Pada proses oksidasi ini akan dihasilkan sejumlah aldehid, asam bebas dan peroksida organik. Untuk mengetahui tingkat ketengikan dari minyak atau lemak, dapat dilakukan dengan menggunakan jumlah peroksida yang telah terbentuk pada minyak atau lemak tersebut. Lemak tidak jenuh khususnya oleat ternyata lebih cepat tengik dibandingkan lemak jenuh. Lemak yang tengik menimbulkan rasa tidak enak, bahkan pada beberapa individu dapat menimbulkan keracunan ringan, dan dapat merusak zat-zat lain yang ada dalam makanan seperti karoten, vitamin A dan vitamin E. Kerusakan minyak dan lemak selain disebabkan oleh proses oksidasi dapat juga disebabkan oleh proses hidrolisa. Pada proses hidrolisa dihasilkan gliserida dari asam-asam lemak berantai pendek (C4-C12) sehingga akan terjadi perubahan rasa dan bau menjadi tengik (Winarno, 1997).

Menurut Buckle et al. (1997) ada dua tipe kerusakan yang utama pada minyak dan lemak, yaitu : 
  • Ketengikan

Ketengikan terjadi bila komponen cita-rasa dan bau yang mudah menguap terbentuk sebagai akibat kerusakan oksidatif dari lemak dan minyak tak jenuh. Komponen-komponen ini menyebabkan bau dan cita-rasa yang tak diinginkan dalam lemak dan minyak produk-produk yang mengandung lemak dan minyak itu.

  • Hidrolisa

Hidrolisa minyak dan lemak menghasilkan asam-asam lemak bebas yang dapat mempengaruhi cita-rasa dan bau daripada bahan itu. Hidrolisa dapat disebabkan oleh adanya air dalam lemak atau minyak atau karena kegiatan enzim.

Hidrogenasi terjadi karena enzim lipase menghidrolisis lemak, memecahnya menjadi gliserol dan asam lemak. Lipase dapat terkandung secara alami pada lemak dan minyak, tetapi enzim itu dapat diaktivasi dengan pemanasan. Hidrogenasi minyak tumbuhan dilakukan untuk meningkatkan titik lebur dan untuk memperlambat oksidasi serta kerusakan rasa selama hidrogenasi. Beberapa asam lemak mengubah susunan alami bentuk cis menjadi trans, ketika minyak kelapa dihidrogenasi. Sehingga jumlah isomer trans asam lemak yang dibentuk, relatif sedikit daripada minyak tumbuhan lainnya. Lemak yang telah terhidrogenasi, titik asapnya akan meningkat karena lebih stabil terhadap pemanasan. Contoh produk hasil hidrogenasi lemak tumbuhan adalah margarin (deMan, 1997).

Menurut Soedarmo et al (1988), kerusakan karena proses hidrolisa terutama banyak terjadi pada minyak atau lemak yang mengandung asam lemak jenuh dalam jumlah cukup banyak seperti pada minyak kelapa yang mengandung asam laurat, sedangkan bau yang tengik ditimbulkan oleh asam lemak bebas yang terbentuk selama proses hidrolisa. Proses hidrolisa pada minyak atau lemak umumnya disebabkan oleh aktifitas enzim dan mikroba. Proses hidrolisa dapat dipercepat dengan kondisi kelembaban yang tinggi, kadar air tinggi serta temperatur tinggi. Proses hidrolisa pada minyak dan lemak akan menghasilkan ketengikan hidrolitik, dimana terjadi pembebasan asam-asam lemak yang mempengaruhi rasa dari minyak tersebut. Enzim yang dapat menimbulkan ketengikan hidrolitik adalah enzim lipase. Ketengikan pada minyak dan lemak nabati terjadi karena berkurangnya kandungan vitamin E (tocopherol) yang dapat berfungsi sebagai anti oksidan.

Angka peroksida merupakan cara pengujian yang paling sering digunakan untuk uji oksidasi lemak atau minyak. Metode iodometri yang paling banyak digunakan untuk menentukan angka peroksida umumnya ditentukan dengan pengukuran banyaknya iod bebas dari larutan kalium iodida jenuh pada suhu ruang dari lemak atau minyak yang dipisahkan dalam pencampuran asam asetat dan kloroform. Iod bebas ditritasi dengna natrium thiosulfat standar. Angka peroksida sebagai indikator produk dasar oksidasi. Angka ini menyatakan milimol oksigen peroksida per kilogram lemak (Pomeranz & Meloan, 1987). Peroksida merupakan produk utama otooksidasi yang dapat diukur dengan teknik berdasarkan pada kemampuannya untuk melepaskan iodin dari kalium iodida atau untuk mengoksidasi ion fero menjadi feri. Kandungannya biasanya diistilahkan dengan miliekuivalen oksigen per kg lemak, yaitu sejumlah oksigen yang diserap atau peroksida yang dibentuk untuk menghasilkan ketengikan dari berbagi macam komposisi minyak (Fennema, 1985).

Lemak netral murni tidak berbau, tidak ada rasa, dan umumnya tidak berwarna. Warna dari lemak dan minyak alami adalah karena adanya pigmen-pigmen yang bercampur atau larut dalam lemak. Lemak tidak larut dalam semua pelarut berair tetapi langsung larut dalam benzena, eter, kloroform, alkohol panas, dan pelarut organik lainnya. Asam lemak rantai pendek dapat larut dalam air dan semakin panjang rantai asam-asam lemaknya semakin berkurang daya kelarutannya dalam air. Bila lemak dibiarkan dalam waktu yang lama kontak langsung dengan udara dan lembab, khususnya ada cahaya dan panas, akan terjadi perubahan menjadi tengik. Perubahan ini terjadi karena proses oksidasi dan proses ini akan dipercepat dengan adanya logam-logam yang bersifat katalisator seperti Zn, Cu (Soedarno & Girindra, 1988).
  
Kerusakan lemak pada daging ikan dapat terjadi karena oksidasi, baik secara oto-oksidasi (enzimatis) maupun secara non enzimatik. Pemeriksaan kerusakan lemak dapat dikerjakan dengan memeriksa kandungan peroksidanya atau jumlah monaldehida yang bisanya dinyatakan sebagai angka TBA (thiobarbituric acid) (Hadiwiyoto, 1993). Selama penggorengan dengan suhu tinggi, minyak mengalami hidrolisis menjadi asam lemak bebas dan gliserol dan selanjutnya gliserol akan terdehidrasi menjadi senyawa akrolein (Bennion & Hughes, 1975). Lemak yang telah terhidrogenasi, titik asapnya akan meningkat karena lebih stabil terhadap pemanasan. Contoh produk hasil hidrogenasi lemak tumbuhan adalah margarin (deMan, 1997).

Lemak yang mengalami ketengikan akan mengandung senyawa aldehid dan kebanyakan berbentuk malonaldehid. Banyaknya malonaldehid dapat ditentukan melalui proses destilasi. Malonaldehid yang terbentuk kemudian direaksikan dengan Thiobarbiturat, sehingga terbentuk senyawa komplek yang berwarna merah. Intensitas warna merah sebanding dengan jumlah malonaldehid dalam suspensi. Pengukuran intensitas warna merah ini dapat dilakukan dengan menghitung abosbansinya dengan menggunakan spektrofotometer pada panjang gelombang 528 nm. Semakin besar angka TBA maka semakin tengik larutan yang diuji (Sudarmadji et al., 1989).

Penambahan antifoam bertujuan untuk mencegah terjadinya pembentukan buih. Pemanasan pada suhu tinggi akan mempercepat proses autooksidasi sehingga akan terbentuk polimer. Pembentukan polimer tersebut akan mengakibatkan kekentalan minyak menjadi naik yang nantinya dapat meningkatkan pembentukan buih pada minyak (deMan, 1999).

ALAT / BAHAN  :
Alat   :
1.       Neraca
2.      Erlenmeyer Asah
3.      Buret

Bahan  :
4.      Minyak
5.      CH3COOH 96%-100%
6.      C2H5OH 96%
7.      CHCl3 (chloroform)
8.      KI
9.      Aquadest ( panas)
10.   Tio 0,02N
11.    Kanji

CARA KERJA :
-       Minyak 10g
1.Ditimbang secara teliti dalam Erlenmeyer asah
2.Ditambahkan 30 mL larutan bilangan peroksida
3.Setelah larut ditambahkan KI 10 gram
4.Didiamkan selama 30 menit di tempat yang gelap sambil          dihomogenkan setiap 5 menit
5.Ditambahkan 50 mL air bebas oksigen
6.Dititrasi dengan larutan tio 0,02 N menggunakan indicator       kanji (a mL ) dibandingkan juga dengan blanko ( b mL )
-       Data

PENGAMATAN   :
1. volume sampel : 34 mL (a)
2. Volume Blanko : 0,8 mL (b)
3. Mg sampel     : 10037,3 Mg
4. Warna larutan sampel sebelum dititrasi :
a.      Sebelum penambahan indicator      : coklat
b.      Setelah penambahan indicator      : hitam
5. Warna larutan setelah titik akhir      : Tidak bewarna
6. Indikator    : Kanji
7. N tio        : 0,02 N

PERHITUNGAN          :


KESIMPULAN :
Dari hasil perhitungan dapat disimpulkan bahwa bilangan peroksida minyak adalah 5,29x10-4 meq/mg

DAFTAR PUSTAKA   :



MAKASSAR, 02 / 09 / 2013
GURU PEMBIMBING                            PRAKTIKAN




( ABDUL MUIZ PATTA )                     ( ANDI ANUGRAH )

Rabu, 25 September 2013

Penetapan kadar Mg dalam Garam Inggris

Diposting oleh Unknown di 07.02 0 komentar
Magnesium

Magnesium adalah unsur kimia dalam tabel periodik yang memiliki simbol Mg dan nomor atom 12 serta berat atom 24,31. Magnesium adalah elemen terbanyak kedelapan yang membentuk 2% berat kulit bumi, serta merupakan unsur terlarut ketiga terbanyak pada air laut. Logam alkali tanah ini terutama digunakan sebagai zat campuran (alloy) untuk membuat campuran alumunium-magnesium yang sering disebut "magnalium" atau "magnelium".
Magnesium merupakan salah satu jenis logam ringan dengan karakteritik sama dengan aluminium tetapi magnesium memiliki titik cair yang lebih rendah dari pada aluminium. Seperti pada aluminium, magnesium juga sangat mudah bersenyawa dengan udara (Oksgen).Perbedaannya dengan aluminium ialah dimana magnesium memiliki permukaan yang keropos yang disebabkan oleh serangan kelembaban udara karena oxid film yang terbentuk pada permukaan magnesium ini hanya mampu melindunginya dari udara yang kering.Unsur air dan garam pada kelembaban udara sangat mempengaruhi ketahanan lapisan oxid pada magnesium dalam melindunginya dari gangguan korosi.Untuk itu benda kerja yang menggunakan bahan magnesium ini diperlukan lapisan tambahan perlindungan seperti cat atau meni.
Magnesium murni memiliki kekuatan tarik sebesar 110 N/mm2 dalam bentuk hasil pengecoran (Casting), angka kekuatan tarik ini dapat ditingkatkan melalui proses pengerjaan. Magnesium bersifat lembut dengan modulus elsatis yang sangat rendah. Magnesium memiliki perbedaan dengan logam-logam lain termasuk dengan aluminium, besi tembaga dan nickel dalam sifat pengerjaannya dimana magnesium memiliki struktur yang berada didalam kisi hexagonal sehingga tidak mudah terjadi slip. Oleh karena itu,magnesium tidak mudah dibentuk dengan pengerjaan dingin.Disamping itu, presentase perpanjangannya hanya mencapai 5 % dan hanya mungkin dicapai melalui pengerjaan panas.

a.  Sifat Fisik Magnesium

b.  Sifat Kimia Magnesium
Ø  Magnesium oksida merupakan oksida basa sederhana.

Ø  Reaksi dengan air:
 MgO    + H2O   -->  Mg(OH)2
Ø  Reaksi dengan udara:
                       Menghasilkan MO dan M3N2 jika dipanaskan.
Ø  Reaksi dengan Hidrogen:
                       tidak bereaksi
Ø  Reaksi dengan klor:                                   
                       M  +  X2    -->  (dipanaskan)  -->   MX2 (garam)

c.   Sifat mekanik Magnesium
·           Rapat massa magnesium adalah 1,738 gram/cm3.
·       Magnesium murni memiliki kekuatan tarik sebesar 110 N/mm2 dalam bentuk hasil pengecoran (Casting)

1.3  Proses Pembuatan Magnesium
Magnesium adalah elemen logam terbanyak ketiga (2%) di kerak bumi setelah besi dan aluminium. Kebanyakan magnesium berasal dari air laut yang mengandung 0,13% magnesium dalam bentuk magnesium klorida. Pertama kali diproduksi pada tahun 1808, logam magnesium dapat didapat dengan cara electrolitik atau reduksi termal. Pada metode elektrolisis, air laut dicampur dengan kapur (kalsium hidroksida) dalam tangki pengendapan.Magnesium hidroksida presipitat mengendap, disaring dan dicampur dengan asam klorida.Larutan ini mengalami elektrolisis (seperti yang dilakukan pada aluminium); agar eksploitasi menghasilkan logam magnesium, yang kemudian dituang/dicor menjadi batang logam untuk diproses lebih lanjut ke dalam berbagai bentuk.
Dalam metode reduksi thermal, batuan mineral yang mengandung magnesium (dolomit, magnesit, dan batuan lainnya) dibagi dengan reduktor (seperti ferrosilicon serbuk, sebuah paduan besi dan silikon), dengan memanaskan campuran di  dalam ruang vakum. Sebagai hasil reaksi ini, wujud uap dari magnesium, dan uap tersebut mengembun menjadi kristal magnesium. Kristal ini kemudian meleleh, halus, dan dituang menjadi batang logam untuk diproses lebih lanjut ke dalam berbagai bentuk.

1.4  Magnesium dan paduan magnesium
Magnesium (Mg) adalah logam teknik ringan yang ada, dan memiliki karakteristik meredam getaran yang baik. Paduan ini digunakan dalam aplikasi struktural dan non-struktural dimana berat sangat diutamakan. Magnesium juga merupakan unsur paduan dalam berbagai jenis logam nonferro.
Paduan magnesium khusus digunakan di dalam pesawat terbang dan komponen rudal, peralatan penanganan material, perkakas listrik portabel, tangga, koper, sepeda, barang olahraga, dan komponen ringan umum. Paduan ini tersedia sebagai produk cor/tuang (seperti bingkai kamera) atau sebagai produk tempa (seperti kontruksi dan bentuk balok/batangan, benda tempa, dan gulungan dan lembar plat). Paduan magnesium juga digunakan dalam percetakan dan mesin tekstil untuk meminimalkan gaya inersia dalam komponen berkecepatan tinggi.
Karena tidak cukup kuat dalam bentuk yang murni, magnesium dipaduankan dengan berbagai elemen untuk mendapatkan sifat khusus tertentu, terutama kekuatan untuk rasio berat yang tinggi. Berbagai paduan magnesium memiliki pengecoran, pembentukan, dan karakteristik permesinan yang baik. Karena magnesium mengoksidasi dengan cepat (pyrophpric), ada resiko/bahaya kebakaran, dan tindakan pencegahan yang harus diambil ketika proses permesinan, grindling, atau pengecoran pasir magnesium. Meskipun demikian produk yang terbuat dari magnesium dan paduannnya tidak menimbulkan bahaya kebakaran selama penggunaannya normal.
Sifat-sifat mekanik magnesium terutama memiliki kekuatan tarik yang sangat rendah.Oleh karena itu magnesium murni tidak dibuat dalam teknik.Paduan magnesium memiliki sifat-sifat mekanik yang lebih baik serta banyak digunakan Unsur-unsur paduan dasar magnesium adalah aluminium, seng dan mangan.
Penambahan Al diatas 11%, meningkatkan kekerasan, kuat tarik dan fluidity (keenceran) Penambahan seng meningkatkan ductility (perpanjangan relative) dan castability (mampu tuang).Penambahan 0,1 – 0,5 % meningkatkan ketahanan korosi.Penambahan sedikit cerium, zirconium dan baryllium dapat membuat struktur butir yang halus dan meningkatkan ductility dan tahan oksidasi pada peningkatan suhu.
Berdasarkan hasil analisis terhadap diagram (Gambar 1.19) keseimbangan paduan antara Magnesium-Aluminium dan Magnesium- Zincum, mengindikasikan bahwa larutan padat dari Magnesium-Aluminium maupun Magnesium Zincum dapat meningkat sesuai dengan peningkatan Temperaturnya dimana masing-masing berada pada kadar yang sesuai sehingga dapat “strengthening-heat treatment” melalui metoda pengendapan. Hanya sedikit kadar “rare metal” (logam langka) dapat memberikan pengaruh yang sama kecuali pada Silver yang sedikit membantu termasuk pada berbagai jenis logam paduan lain melalui “ageing”.

a)      Magnesium paduan tempa (Wrought Alloys)
Magnesium paduan tempa dikelompokkan menurut kadar serta jenis unsur paduannya yaitu :
1)      Magnesium dengan 1,5 % Manganese
2)      Paduan dengan Aluminium , Seng serta Manganese
3)      Paduan dengan Zirconium (paduan jenis ini mengandung kadar Seng yang tinggi sehingga dapat dilakukan proses perlakuan panas.
4)      Paduan dengan Seng, Zirconium dan Thorium (Creep resisting-Alloys)


Penandaan paduan magnesium
Paduan Magnesium ditetapkan sebagai berikut:
·                     Satu atau dua huruf awalan, menunjukkan elemen paduan utama.
·                     Dua atau tiga angka, menunjukkan persentase unsur paduan utama dan dibulatkan ke desimal terdekat.
·                     Huruf abjad (kecuali huruf I dan O) menunjukkan standar paduan dengan variasi kecil dalam komposisi.
·                     Simbol untuk sifat material, mengikuti sistem yang digunakan untuk paduan aluminium.
Sebagai contoh, ambil paduan AZ91C-T6:
·                     Unsur-unsur paduan utama adalah aluminium (A sebesar 9%, dibulatkan) dan seng (Z sebesar 1%).
·                     Huruf C, huruf ketiga dari alfabet, menunjukkan bahwa paduan ini adalah yang ketiga dari satu standar (kemudian dari A dan B, yang merupakan paduan pertama dan kedua yang standar, berturut-turut).
·                     T6 paduan menunjukkan bahwa larutan ini telah direaksikan dan masa artifiasial.

b)      Magnesium paduan Cor (Cast Alloys)
Paduan ini dapat dikelompokan kedalam :
1)  Paduan dengan Aluminium, Zincum dan Manganese.Paduan cor ini merupakan paduan yang yang bersifat “heat tretable – Alloys”.
2)   Paduan dengan Zirconium, Zincum dan Thorium, paduan dengan unsur Zirconium dan Thorium merupakan paduan cor yang bersifat heat treatable dan creep resisiting.
3)   Paduan dengan Zirconium dengan Rare earth metal serta Silver merupakan paduan Cor yang dapat di-heat treatment.
4)   Paduan dengan Zirconium, beberapa dari paduan Cor ini dapat di-heat treatment.

a  Proses perlakuan panas pada Magnesium Paduan
Jika Magnesium telah mengandung unsur paduan dengan jenis dan kadar yang memadai dan memiliki sifat tertentu maka untuk mencapai sifat yang dikehendaki dapat dipertimbangkan untuk kemungkinan dapat diperbaiki serta penyempurnaan melalui proses perlakuan panas, akan tetapi untuk peningkatan tegangannya hanya Magnesium dengan unsur Alumunium dan rare Metal yang memungkinkan dapat ditingkatkan, hal ini juga masih tergantung pada kesesuaian dan ketepatan prosedur pelaksanaannya sehingga  dapat dicapai sifat yang sesuai dengan kebutuhan, untuk itu prosedur berikut merupakan bagian dari pelaksanan perlakuan terhadap Magnesium, antara lain :
1)     Natural Ageing
2)     Precipitation treatment
3)     Precipitation without previus Solution treatment(Pengendapan tanpa pelarutan awal)
Dengan demikian bahan paduan ini harus didinginkan diudara atau diquenching setelah proses pelarutan dengan prosedur yang benar.

b  Fabrikasi Magnesium Paduan
Magnesium dapat dibentuk melalui berbagai metoda pengecoran seperti Sand-Casting, Die-Casting serta pressure Die Casting, dengan berbagai dimensi termasuk untuk kebutuhan tempa seperti rolling, Forging dan extruding. Dalam proses rolling dari Magnesium paduan tempa ternyata memiliki perbedaan pada Kekuatan tarik, ketahanan stress dan prosentase pertambahan panjang menurut arah pengerolannya, dimana pengerolan pada arah melintang (Transverse direction) lebih tinggi dari pada pengerolan pada arah memanjang (Longitudinal direction). Pembentukan dengan pemesinan (Machining) sering kali   diperlukan perhatian khusus karena pada akhir pemotongan sering kali terjadi kegosongan (hangus) yang mengakibatkan sisa pemotongan menjadi mudah terbakar, hal ini disebabkan oleh terjadinya gesekan selama pemotongan, untuk itu ketajaman alat potong ini harus diperhatikan serta menyediakan peralatan pemadam kebakaran yang sesuai yaitu dry-fire extinguisher. Proses pendinginan dengan media Water base Colant tidak sesuai pemakaiannya.
Proses penyambungan pada Magnesium yang paling sesuai ialah dengan baut (Bolting) atau di keling (riveting), namun dapat juga dilas dengan las busur yang menggunakan bususr argon, oxyassetyline atau dengan metode electrical resistance. Untuk melindungi permukaan Magnesium terhadap pengaruh gangguan korosi dapat dilakukan dengan memberikan lapisan pelindung dengan cat yang terlebih dahulu dibebaskan dari minyak atau greace dan akan lebih baik jika dilapisi terlebih dahulu dengan Chromat, dengan metode ini kondisi permukaan akan bertahan tanpa perubahan yang berarti pada periode resonansi. Untuk melindungi Magnesium dari serangan korosi galvanis bagian paduan yang berhubungan dengan lain, terkena larutan electrolyte atau lembab maka bagian ini harus dilapisi dengan cat atau Jointer Compound jika logam yang memiliki beda potensialnya sangat kecil seperti Aluminium dengan Magnesium, akan tetapi jika Magnesium menyerang baja dengan luas kontak diluar jangkauannya, maka dapat juga digunakan non Conductor gasket.

c  Penerapan Magnesium paduan
Magnesium paduan Cor yang dibentuk dengan cetakan pasir (Sand-Cast) banyak digunakan dalam pembuatan block-block engine pada Motor bakar, sedangkan Magnesium yang dibentuk dengan Pressure Die-Casting banyak digunanakan dalam pembuatan peralatan rumah tangga dan kelengkapan kantor. Magnesium Cor tempa dibentuk dengan cara extrusi dan digunakan sebagai Trap dan relling tangga. Magnesium paduan juga digunakan dalam Teknologi Nuclear sebagai tabung Uranium dimana Magnesium sangat rendah dalam penyerapan Neutron pada penampang lintang.

      1. 4  Manfaat Magnesium
1.    Magnesium dapat digunakan untuk memberi warna putih terang pada kembang api dan pada lampu Blitz
2.  Senyawa MgO dapat digunakan untuk melapisi tungku, karena senyawa MgO memiliki titik leleh yang tinggi
3.    Senyawa Magnesim Hidroksida diguakan dalam pasta gigi untuk mengurangi asam yang terdapat di mulut dan mencegah terjadinya kerusakan gigi, sekaligus sebagai pancegah maag
4.    Membuat campuran logam semakin kuat dan ringan sehingga biasa digunakan pada alat-alat rumah tangga

           1.5     efek samping penggunaan Magnesium
·                     Menghirup debu atau asap mengandung magnesium dapat mengiritasi saluran pernafasan dan dapat menyebabkan demam fume logam. Gejala dapat termasuk batuk, sakit dada, demam, dan leukositosis.
·                     Apabila tertelandapat menyebabkan sakit perut dan diare.
·                     Molten magnesium dapat menyebabkan luka bakar kulit serius.
·                     Konsentrasi tinggi dari debu dapat menyebabkan iritasi mekanis.
·                     Melihat api magnesium dapat menyebabkan cedera mata.

  1.6 Penyimpanan dan Penanganan Magnesium
     1.
      Simpan dalam wadah yang tertutup rapat. 
     2.
      Simpan di tempat yang kering dan berventilasi. 
     3.
      Hindari tempat penyimpanan yang lembab 
     4.
      Jauhkan dari oksidasi, klorin, bromin, yodium, asam,dan  semua sumber api.

Magnesium adalah unsur kimia dalam tabel periodik yang memiliki simbol Mg dan nomor atom 12 serta berat atom 24,31. Magnesium adalah elemen terbanyak kedelapan yang membentuk 2% berat kulit bumi, serta merupakan unsur terlarut ketiga terbanyak pada air laut. Logam alkali tanah ini terutama digunakan sebagai zat campuran (alloy) untuk membuat campuran alumunium-magnesium yang sering disebut "magnalium" atau "magnelium". 
GARAM INGGRIS 
   
     Magnesium sulfat (atau magnesium sulfat) adalah senyawa kimia yang mengandung magnesium, sulfur dan oksigen, dengan rumus MgSO4. Hal ini sering dijumpai sebagai epsomite heptahydrate (MgSO4 · 7H2O), biasa disebut garam Epsom,Mencari kaitan antara kekuatan asam dan basa pembentuk garam dan sifat larutan garam. NO RUMUS KIMIA GARAM BASA PEMBENTUK ASAM PEMBENTUK SIFAT LARUTAN RUMUS JENIS RUMUS JENIS 1. CuSO4 Cu(OH)2 Basa lemah H2SO4 Asam kuat asamBila teori Kekulé dan Couper digunakan untuk mengintepretasikan struktur garam luteo, senyawa yang mengandung kation logam dan aminua dengan rumus rasional Co(NH3)6Cl3, maka struktur singular harus diberikan. Sifat sebenarnya dari valensi tambahan ini diungkapkan oleh kimiawan Inggris Nevil Vincent Sidgewick (1873-1952). Ia mengusulkan sejenis ikatan kovalen dengan pasangan elektron yang hanya disediakan oleh salah satu atom, yakni ikatan koordinat.Teori lain menjelaskan bahwa kemampuan ikatan (afinitas kimia) atom tertentu yang terikat sejumlah tertentu atom lain. Kimiawan Jerman Stradouity Friedrich August Kekulé (1829-1896) dan kimiawan Inggris Archibald Scott Couper (1831-1892) Bila teori Kekulé dan Couper digunakan untuk mengintepretasikan struktur garam luteo, senyawa yang mengandung kation logam dan aminua dengan rumus rasional Co(NH3)6Cl3, maka struktur singular (gambar 3.4(a)) harus diberikan.Segera setelah itu, JA Chaptal menerbitkan analisis dari empat jenis tawas, yaitu Romawi tawas, Levant tawas, tawas Inggris dan tawas diproduksi oleh dirinya sendiri. Analisis ini menyebabkan hasil yang sama seperti Vauquelin. Produk komersial adalah salah satu garam padat terhidrasi, dengan rumus kimia Al2(SO4)3. 13 sampai 15 H2O. Produk ini dikirim dalam bentuk serpih, bubuk atau balok. Di Eropa, bagian terbesar dari aluminium sulfat dihasilkan oleh reaksi asam

      Dengan mempelajarinya diharapkan kamu dapat mengelompokkan sifat larutan asam, basa dan garam melalui alat dan indikator dengan bahan di sekitarmu. Selain itu kamu juga diharapkan memahami unsur dan rumus kimia serta perbandingan sifat unsur, .. KNO3. pembuatan pupuk. 3. Kalsium karbonat. CaCO3. bahan bangunan,. bahan baku. pembuatan asam. 4. Natrium fosfat. Na3PO4. bahan detergen. 5. Natrium fluorida. NaF. pasta gigi. 6. Magnesium sulfat. MgSO4. garam inggris atauContoh lainnya, air mengandung partikel-partikel terkecil yang berbeda dengan partikel-partikel terkecil yang menyusun garam dapur. Begitu banyak ragam partikel-partikel terkecil yang ada di alam sesuai dengan beragamnya zat yang ada di alam. Berdasarkan berbagai fenomena yang ada, John Dalton (1766–1844) yang merupakan seorang guru kimia dari Inggris, pada 1808 mengajukan pemikiran tentang partikel terkecil yang menyusun materi tersebut.MOTIVASI THE POWER OF KEPEPET DAN KEBETULAN-KEBETULAN (PUN) TERJADI "Seandainya sekarang Anda tidak memiliki uang tabungan. Penghasilan majalah bahasa inggris. Modul 1 People and place 1. My Personality Hello guy's good morning, I will introduce my self : my Zat kimia ini merupakan suatu pelarut yang penting, yang memiliki kemampuan untuk melarutkan banyak zat kimia lainnya, seperti garam-garam, gula, asam, beberapa jenis gas dan banyak macam molekul organik.

manfaat Garam Inggris



      Garam Inggris/Epsom Salt atau dalam bahasa kimia disebut sebagai Magnesium Sulfat (MgSO4) biasa digunakan untuk menambah kadar mineral dalam air. Semua garam rasanya asin. Hanya saja kadar keasinan garam berbeda-beda. Garam dapur dengan rumus kimia NaCl (natrium chlorida) adalah garam yang paling asin.

      Garam Inggris telah dikenal selama beratus tahun yang lalu. Garam Inggris dipercaya mujarab menyembuhkan berbagai macam penyakit. Apa saja khasiat garam Inggris? Penamaan garam Inggris atau Epsom salt karena garam ini berasal dari Epsom, Surrey, Inggris.
Berbeda dengan garam meja yang mengandung natrium klorida, kandungan garam Inggris adalah magnesium sulfat. Kandungan inilah yang membuat garam Inggris bersifat menguntungkan, karena dapat menenangkan tubuh, pikiran dan jiwa.
Berikut beberapa khasiat garam Inggris:

1. Menghilangkan stres dan membuat tubuh santai

Stres dapat menghilangkan magnesium dari dalam tubuh. Kandungan magnesium sulfat garam Inggris yang dilarutkan dalam air hangat dapat diserap melalui kulit dan mengisi ulang tingkat magnesium dalam tubuh. Garam juga dapat menarik racun dari tubuh, menenangkan sistem saraf, mengurangi pembengkakan dan membuat otot-otot rileks.

2. Mengurangi rasa sakit dan kram otot

Merendam kaki dalam bak dengan setengah cangkir garam Inggris, tidak hanya menghilangkan lelah, tetapi juga menghilangkan bau kaki. Garam Inggris menetralisir bau kaki dan melembutkan kulit. Mandi garam Inggris juga diketahui dapat meringankan peradangan dan mengurangi rasa sakit, sehingga bermanfaat dalam pengobatan sakit otot, asma dan migrain.

3. Mengangkat kulit mati

Cobalah pijat dengan satu sendok makan garam Inggris yang dicampur dengan minyak zaitun atau minyak mandi dan digosok ke seluruh tubuh, ini dapat mengangkat kulit mati dan melembutkan kulit.

4. Membantu otot dan saraf berfungsi dengan baik

Studi menunjukkan bahwa magnesium adalah elektrolit dan membantu untuk memastikan berfungsinya otot, saraf dan enzim dengan baik. Garam Inggris juga penting untuk pemanfaatan yang tepat dari kalsium dalam sel, dan dapat mengobati reumatik atau radang sendi.

5. Membantu mencegah pengerasan arteri dan pembekuan darah

Garam Inggris juga dipercaya membantu mencegah penyakit jantung dan stroke dengan menurunkan tekan darah, melindungi elastisitas pembuluh darah, mencegah pembekuan darah dan mengurangi risiko kematian serangan jantung mendadak.
6. Membuat insulin lebih efektif

Garam Inggris ini juga meningkatkan efektivitas insulin, membantu menurunkan risiko atau keparahan diabetes.

7. Meredakan konstipasi atau sembelit

Sejumlah penelitian telah menunjukkan bahwa garam Inggris dapat juga digunakan untuk mengobati sembelit. Garam Inggris bertindak seperti pencahar.
Garam Inggris meningkatkan air dalam usus dan dapat membantu sembelit. Namun, sangat diperingatkan bahwa garam Inggris tidak boleh digunakan untuk meringankan sembelit tanpa konsultasi dokter karena dapat berbahaya dalam beberapa kasus.
 

>>> Nhunhu Zone Copyright © 2011 Design by Ipietoon Blogger Template | web hosting